1,164 research outputs found

    Benchmarking of Gaussian boson sampling using two-point correlators

    Get PDF
    Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this contribution, we study two-point photon-number correlation functions to gain insight into the interference of Gaussian states in optical networks. We investigate the characteristic features of statistical signatures which enable us to distinguish classical from quantum interference. In contrast to the typical implementation of boson sampling, we find additional contributions to the correlators under study which stem from the phase dependence of Gaussian states and which are not observable when Fock states interfere. Using the first three moments, we formulate the tools required to experimentally observe signatures of quantum interference of Gaussian states using two outputs only. By considering the current architectural limitations in realistic experiments, we further show that a statistically significant discrimination between quantum and classical interference is possible even in the presence of loss, noise, and a finite photon-number resolution. Therefore, we formulate and apply a theoretical framework to benchmark the quantum features of Gaussian boson sampling under realistic conditions

    Dissipation of Quasiclassical Turbulence in Superfluid 4^4He

    Get PDF
    We compare the decay of turbulence in superfluid 4^4He produced by a moving grid to the decay of turbulence created by either impulsive spin-down to rest or by intense ion injection. In all cases the vortex line density LL decays at late time tt as Lt3/2L \propto t^{-3/2}. At temperatures above 0.8 K, all methods result in the same rate of decay. Below 0.8 K, the spin-down turbulence maintains initial rotation and decays slower than grid turbulence and ion-jet turbulence. This may be due to a decoupling of the large-scale superfluid flow from the normal component at low temperatures, which changes its effective boundary condition from no-slip to slip.Comment: Main article: 5 pages, 3 figures. Supplemental material: 4 pages, 3 figures. Accepted for publication in Physical Review Letter

    Integrated Photonic Sensing

    Full text link
    Loss is a critical roadblock to achieving photonic quantum-enhanced technologies. We explore a modular platform for implementing integrated photonics experiments and consider the effects of loss at different stages of these experiments, including state preparation, manipulation and measurement. We frame our discussion mainly in the context of quantum sensing and focus particularly on the use of loss-tolerant Holland-Burnett states for optical phase estimation. In particular, we discuss spontaneous four-wave mixing in standard birefringent fibre as a source of pure, heralded single photons and present methods of optimising such sources. We also outline a route to programmable circuits which allow the control of photonic interactions even in the presence of fabrication imperfections and describe a ratiometric characterisation method for beam splitters which allows the characterisation of complex circuits without the need for full process tomography. Finally, we present a framework for performing state tomography on heralded states using lossy measurement devices. This is motivated by a calculation of the effects of fabrication imperfections on precision measurement using Holland-Burnett states.Comment: 19 pages, 7 figure

    A ferrofluid based neural network: design of an analogue associative memory

    Full text link
    We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a trainingdphase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern-pair the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated in the output pads. The actual memory consists of spin distributions that is dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.Comment: submitted to Neural Network

    Dense Ionized and Neutral Gas Surrounding Sgr A*

    Get PDF
    We present high resolution H41a hydrogen recombination line observations of the 1.2' (3 pc) region surrounding Sgr A* at 92 GHz using the OVRO Millimeter Array with an angular resolution of 7" x 3" and velocity resolution of 13 km/s. New observations of H31a, H35a, H41a, and H44a lines were obtained using the NRAO 12-m telescope, and their relative line strengths are interpreted in terms of various emission mechanisms. These are the most extensive and most sensitive observations of recombination line to date. Observations of HCO+ (1 - 0) transition at 89 GHz are also obtained simultaneously with a 40% improved angular resolution and 4-15 times improved sensitivity over previous observations, and the distribution and kinematics of the dense molecular gas in the circumnuclear disk (CND) are mapped and compared with those of the ionized gas. The line brightness ratios of the hydrogen recombination lines are consistent with purely spontaneous emission from 7000 K gas with n_e = 20,000 cm3^{-3} near LTE condition. A virial analysis suggests that the most prominent molecular gas clumps in the CND have mean densities of 10^7 cm^{-3}, sufficient to withstand the tidal shear in the Galactic Center region. Therefore, these clumps may survive over several dynamical times, and the CND may be a dynamically stable structure. We estimate a total gas mass of 3 x 10^5 solar mass for the CND. \Comment: 34 pages including 11 figures (4 jpgs), Latex, uses aastex. The full pdf format file including high resolution figures is available at http://www.astro.umass.edu/~myun/papers/SgrA.pdf . To appear in the 20 November 2004 (V616) issue of the Astrophysical Journa

    A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations

    Get PDF
    The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and Astrophysics (abstract modified to fit arXiv restrictions

    A Multi-Wavelength High Resolution Study of the S255 Star Forming Region. General structure and kinematics

    Get PDF
    We present observational data for two main components (S255IR and S255N) of the S255 high mass star forming region in continuum and molecular lines obtained at 1.3 mm and 1.1 mm with the SMA, at 1.3 cm with the VLA and at 23 and 50 cm with the GMRT. The angular resolution was from ~ 2" to ~ 5" for all instruments. With the SMA we detected a total of about 50 spectral lines of 20 different molecules (including isotopologues). About half of the lines and half of the species (in particular N2H+, SiO, C34S, DCN, DNC, DCO+, HC3N, H2CO, H2CS, SO2) have not been previously reported in S255IR and partly in S255N at high angular resolution. Our data reveal several new clumps in the S255IR and S255N areas by their millimeter wave continuum emission. Masses of these clumps are estimated at a few solar masses. The line widths greatly exceed expected thermal widths. These clumps have practically no association with NIR or radio continuum sources, implying a very early stage of evolution. At the same time, our SiO data indicate the presence of high-velocity outflows related to some of these clumps. In some cases, strong molecular emission at velocities of the quiescent gas has no detectable counterpart in the continuum. We discuss the main features of the distribution of NH3, N2H+, and deuterated molecules. We estimate properties of decimeter wave radio continuum sources and their relationship with the molecular material.Comment: 21 pages, 26 figures, accepted for publication in Astrophysical Journa

    The challenges of developing rainfall intensity-duration-frequency curves and national flood hazard maps for the Caribbean

    Get PDF
    In many Caribbean countries a lack of established good practice methods means that engineers and planners are often unable to plan for and mitigate floods effectively. In most Caribbean states rainfall intensity – duration – frequency (IDF) curves are not readily available. This is a result of the limited quantity of short duration rainfall data available and also because the few IDF curves that have been developed in the region are generally not in the public domain. The lack of readily available IDF curves in the region often results in engineers responsible for the design of key infrastructure inappropriately “transferring” IDF curves developed for islands, where rainfall is less intense, for use in their designs. There are no countries in the Caribbean with nationally consistent flood hazard maps. This often leaves spatial and emergency planners with insufficient information to make important strategic decisions. This paper details the challenges that were faced in producing rainfall IDF curves for return periods up to 1 in 50 years and nationally consistent extreme fluvial flood extent maps with limited data for selected countries within the Caribbean. Recommendations are made for the future development of rainfall IDF curves and national flood maps in the region both in terms of data and organisational requirements

    Avalanche Photo-Detection for High Data Rate Applications

    Full text link
    Avalanche photo detection is commonly used in applications which require single photon sensitivity. We examine the limits of using avalanche photo diodes (APD) for characterising photon statistics at high data rates. To identify the regime of linear APD operation we employ a ps-pulsed diode laser with variable repetition rates between 0.5MHz and 80MHz. We modify the mean optical power of the coherent pulses by applying different levels of well-calibrated attenuation. The linearity at high repetition rates is limited by the APD dead time and a non-linear response arises at higher photon-numbers due to multiphoton events. Assuming Poissonian input light statistics we ascertain the effective mean photon-number of the incident light with high accuracy. Time multiplexed detectors (TMD) allow to accomplish photon- number resolution by photon chopping. This detection setup extends the linear response function to higher photon-numbers and statistical methods may be used to compensate for non-linearity. We investigated this effect, compare it to the single APD case and show the validity of the convolution treatment in the TMD data analysis.Comment: 16 pages, 5 figure
    corecore